Solubility #2

- 1. A solution contains SO_4^{2-} and CI^- . Outline an experimental procedure to remove each ion individually from the solution, and identify the reagents used in the procedure.
 - Add either Ca(NO3)₂ or Sr(NO3)₂
 or Ba(NO3)₂ allow it to settle → ppts SO4²-
 - @ Add CUNO3 to ppt CIT. Allow It to settle out
- 2. A solution is known to contain Cu⁺, Be²⁺ and Sr²⁺ ions, each at a concentration of 0.20 M.
 - (a) What compound could be used to precipitate the Sr^{2+} while leaving the other two cations in solution?

Na 2 504

(b) Write the net ionic equation for the reaction.

 $Sr^{2+}(aq) + SOu^{2-}(aq) \longleftrightarrow SrSOu(s)$

- 3. A solution contains Pb^{2+} , Mg^{2+} , and Sr^{2+} . Outline a procedure to isolate the precipitate $SrSO_4$ from this solution.
 - + 1) Use Nacl to ppt. Pb2+ as Pbc12
 - 2) Use Na 1804 to ppr Srsou

95

- 1) Use KOH to PP+ both Pb2+ and Mg2+ as Pb(CH)2 and Mg(CH
- 2) Use NazSO4 to PPT SrSO4
- 4. Write the formula of two materials (other than water) that could be added to a saturated solution of Ag₂CO₃ to increase the amount of Ag₂CO₃ that will dissolve.

Ag= CO3 (> 2Ag+ + CO32- or halide ion CI- + Ag+ (> AgCI), add something to remove Ag+ or CO32- eg. Acid > CO32+21++()

- 5. A solution contains Ca^{2+} , Sr^{2+} and Pb^{2+} ions that must be separated. CO_2+H_2
 - (a) Identify an anion that could be used to remove only the lead ion by precipitation.

CIT, IT, BrT, S2-

(b) Identify an anion that could be used to separate Ca^{2+} from Sr^{2+} .

OH-

Key

6. Use the table of solubilities to determine a scheme that allows the separation of Ba²⁺, Cu²⁺, and Br⁻ from each other.

7. Use the table of solubilities to describe how you would separate Mg²⁺, Ba²⁺ and Ag⁺ from each other.

8. Use the table of solubilities to outline a scheme to separate a mixture of Li⁺, Ag⁺, Sr²⁺ and Fe³⁺ from each other.

9. A beaker contains OH⁻ ions and S²⁻ ions in solution both at a concentration of 0.10 M. You are asked to precipitate the OH⁻ ions while leaving the S²⁻ ions in solution.

(b) Write the net ionic equation for the precipitation reaction.